Metric-Based Semi-Supervised Regression
نویسندگان
چکیده
منابع مشابه
Composite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کاملSemi Supervised Logistic Regression
Semi-supervised learning has recently emerged as a new paradigm in the machine learning community. It aims at exploiting simultaneously labeled and unlabeled data for classification. We introduce here a new semi-supervised algorithm. Its originality is that it relies on a discriminative approach to semisupervised learning rather than a generative approach, as it is usually the case. We present ...
متن کاملSemi-Supervised Multi-Task Regression
Labeled data are needed for many machine learning applications but the amount available in some applications is scarce. Semi-supervised learning and multi-task learning are two of the approaches that have been proposed to alleviate this problem. In this paper, we seek to integrate these two approaches for regression applications. We first propose a new supervised multi-task regression method ca...
متن کاملA Semi-Supervised Metric Learning for Content-Based Image Retrieval
In this paper, the authors propose a kernel-based approach to improve the retrieval performances of CBIR systems by learning a distance metric based on class probability distributions. Unlike other metric learning methods which are based on local or global constraints, the proposed method learns for each class a nonlinear kernel which transforms the original feature space to a more effective on...
متن کاملBased on Similarity Metric Learning for Semi-Supervised Clustering
Semi-supervised clustering employs a small amount of labeled data to aid unsupervised learning. The focus of this paper is on Metric Learning, with particular interest in incorporating side information to make it semi-supervised. This study is primarily motivated by an application: face-image clustering. In the paper introduces metric learning and semi-supervised clustering, Similarity metric l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2971229